
Requirements

Cohort 4 Group 6

Javengers

Braithwaite, Max
Faruque, Amber

Fu, Zhuoran
Kocaman, Melike
McDermott, John
Rissen, James
Scott, Charlotte

As a group, we researched different methods of coming up with questions in the process of
eliciting user requirements. The approach we decided to follow was brainstorming as a team,
with each team member contributing and giving their opinions. Brainstorming encourages
creativity from every team member, as well as being a very swift and efficient process. The
product of the brainstorming was then condensed and refined by a couple of team members
while other members were completing tasks succinctly. This set of questions was then
reviewed by the other members of the team, with each question being discussed and
reasoned as to its importance. We aimed to ask as many questions as possible during the
interview to maximise the amount of information conveyed to us by the customer.

Our research was conducted with our client in an interview. Our approach to the interview
was to have one team member primarily asking questions, whilst another team member was
noting down key fundamental requirements. We also voice recorded the interview to ensure
we didn't miss any key information. Our client initially covered the primary details that they
wanted for the game and then we followed up with some additional functional and
non-functional questions. Post-interview, our team organised a meeting to discuss the user
requirements which we had gathered from the client, ensuring that everyone was familiar
and comfortable with the plan for the project.

In order to document our requirements post-interview we broke the requirements down into
three tables, user requirements, functional requirements and non-functional requirements.
This was beneficial as splitting the requirements into categories ensures that each type of
requirement is clearly defined and easy to locate while reducing confusion in regards to task
allocation. This allows our team members to quickly scan the tables and prioritise
requirements. Additionally, by including priorities in the table we can make sure that nothing
vital is missed in the implementation. We decided to use IDs to allow the requirements to be
easily referenced between documents and in project tracking. Finally this separation
improves the ease of testing as test cases can be mapped directly to requirements.

ID Description Priority

UR_DISPLAY The game should display to the user over a screen of varying sizes and should be
accommodating for visual impairments.

Shall

UR_MAP The game should have a university maze style map which the player must navigate to
escape - this could resemble the UOY campus to appeal to stakeholders.

Shall

UR_PLAYER_CONTROL The User should be able to control the player using an input system (Mouse and
keyboard).

Shall

UR_GAME_COMPLETION The User should be able to complete the game - winning or losing. Shall

UR_PLAYER_ABILITIES The User should be able to interact with the surroundings in specific ways that allow
them to overcome a challenge .

Should

UR_CHALLENGE There should be interactions in the game that challenge the user, preventing them from
completing the game too easily.

Should

UR_SYSTEM The system should work well on multiple devices Should

UR_STYLE The game should be a top down 2D style maze game, themed around escaping from
university - user group ought to be considered.

Shall

UR_TIME_LIMIT The game should have a limited duration. Shall

UR_MENUS The User should have access to several menu screens within the game that allow them
to access key changeable variables - they must be easy to navigate.

Shall

UR_UI There should be a pleasant and understandable UI. Should

UR_ENEMY The user can be slowed down by enemies that patrol the map. May

UR_POINTS The user can collect and earn points that increase their overall score. Should

UR_LEADERBOARD The user should be able to view their past scores via a leaderboard table accessible
through the main menu - this should be clear and easy to access.

Should

ID Description User Requirements

FR_RESIZE The window will resize to fit the screen size of the Users device. UR_DISPLAY

FR_COLLISION The player character will collide with the sections of the map - limiting
their movement.

UR_MAP

FR_MAP_LIMIT The map will have an “end” which the play cannot move over. UR_MAP

FR_KEYBOARD_CONTRO
L

The player must be able to move up, down, left and right with the
keys WASD, and the player character must alter its sprite in situ with
this movement.

UR_PLAYER CONTROL

FR_MOUSE_CONTROL The player must be able to use the buttons on their mouse to interact
with the game and it must implement some functionality in the design.

UR_PLAYER_CONTROL

FR_WIN_LOSE The User must be able to find a way to complete the game within the
constraints of the game.

UR_GAME_COMPLETIO
N

FR_WIN_LOSE_SCREEN Upon the user completing the game, or the player running out of time,
the game should display a screen or image to inform the user of their
success or failure.

UR_GAME_COMPLETIO
N

FR_TORCH The user must use a torch mechanic to light their way in the game in
order to escape the maze. There must be a way for the player to
interact with the torch via an input device.

UR_PLAYER_ABILITIES

FR_KEYCARD The user must be able to pick up, hold, drop and use a keycard to
access new areas of the map.

UR_PLAYER_ABILITIES

FR_FOOD The User should be able to collect and consume a food item that
temporarily boosts certain variables associated with the player
character.

UR_PLAYER_ABILITIES

FR_GOOSE The player Should be hindered by a goose - per the game being set
on UOY campus. The Goose should be able to “steal” an item from
the player and hinder them from completing the game.

UR_CHALLENGE

FR_LAKESIDE_EVENT The player should be able to interact with the area around the
lakeside, including the buildings. Completing tasks in each

UR_CHALLENGE

FR_MAZE_EVENT The player should be able to complete small “side tasks" in the maze
in order to earn extra points or increase their “time remaining” during
the gameplay - these need not be completed in order to complete the
game.

UR_CHALLENGE

FR_HIDDEN_GOOSE_EVE
NT

The play should be able to interact with the goose in some hidden
way which does not hinder or benefit the player.

UR_CHALLENGE

FR_LECTURER The player should be chased by a lecturer and forced into an
UNSKIPPABLE cutscene - the timer should continue to run during
this - worsening the player's score.

UR_CHALLENGE

FR_VISUALS The game should resemble a university, but not with realism, a
cartoonish style that is appealing to the general clientele, possibly a
pixellated style that is appealing to younger users.

UR_STYLE

FR_COUNTDOWN There should be a timer that limits the length of the game, this should
be visible at all times when a game is in effect, it should limit the
game to last 5 minutes.

UR_TIME_LIMIT

FR_PAUSE_COUNTDOWN When the game is paused the countdown should be paused as well. UR_TIME_LIMIT

FR_MAIN_MENU There should be a main menu when the game is first opened which
allows a player to access all other menus of the game, as well as a
way to initiate a sequence of the game - a “PLAY” button.

UR_MENUS

FR_SETTINGS There should be a settings menu where the user can alter key
variables within the game - such as game volume, music, player
sounds. There should also be a return button to the main menu.

UR_MENUS

FR_PAUSE When the player pauses the game the pause menu should appear.
This should stop the timer countdown, as well as offer the player the
option to return to the main menu, as well as the option to return to
the game.

UR_MENUS

FR_RETURN The player should be able to return to the previous menu from the
menu they’re in now.

UR_MENUS

FR_LOCAL_SCORE There should be a menu where the user can see a set of saved game
scores - only the top ten should be shown along with the details
relevant to them.

UR_MENUS

FR_SCORE There should be a constantly displayed score which is based on the
player's timer, as well as interactions that a player completes within
the game.

UR_UI

FR_HOTBAR The player should be able to collect items and store them in an
inventory style hotbar. The hotbar should be visible at the top of the
screen - could have a size limit

UR_UI

FR_ACTIVE_CHALLENGE There should be a block of text that describes to the player what they
should be trying to do - so the player does not get confused and lose
interest.

UR_UI

FR_CLOCK Part of the UI should simply show the timer countdown. UR_UI

FR_E_PATROL Enemies that patrol the map should be able to hinder or slow down
the player without a specific cutscene or interaction.

UR_ENEMY

FR_BONUS There should be a collectable item that gives you some bonus points
towards your final score that is collectable throughout the game.

UR_POINTS

FR_INTERACTION_BONU
S

Upon completing specific interactions the player should gain a
specific set of bonus points depending on how quickly they completed
the interaction or task.

UR_POINTS

ID Description User ID Fit Criteria

NFR_NAVIGATION The map should be easily
traversed.

UR_MAP It should not take the player more than 2.5
minutes to cross the entire map.

NFR_MAP_LOAD The time to load from one “map” in
the game main maze to side
rooms etc should be quick.

UR_MAP It should not take more than a second to load in
and out from maps.

NFR_PLAYER_RESPON
SE

The player's character should
respond quickly to user inputs.

UR_PLAYER
_CONTROL

The player's character should respond to an
input in <1ms.

NFR_INTUITIVE The game should be easy for
someone new to learn.

UR_PLAYER
_CONTROL

The game controls should be easy for someone
to learn within the first 2 minutes of gameplay

NFR_FEEDBACK The game should provide
feedback is the player completes
an action

UR_PLAYER
_CONTROL

And audible feedback shall inform the player
they have completed an action

NFR_GAME_END The game should finish within a
set time.

UR_GAME_C
OMPLETION

The game should last < 5mins.

NFR_MIN_TIME The game should not be
completable under a certain time.

UR_GAME_C
OMPLETION

The game should last > 3mins.

NFR_MENU_USE Menus should be usable UR_MENUS The font on the menus should be readable.

NFR_MENU_TO_GAME The switch from the menu screen
to the actual game should be
quick.

UR_MENUS Should move from menus to game < 3 seconds.

NFR_INTER-MENU Moving from menu to menu should
not be slow, allowing the player to
navigate easily.

UR_MENUS From one menu to another should take < 1
second.

NFR_PAUSE_MENU Once in the game the player can
pause the game - but should be
able to do this quickly

UR_MENUS The switch from game to pause menu should
take less than a second.

NFR_GAMESPEED The game should run smoothly at
all points

UR_DISPLAY The game should run at >60fps 90% of the time

NFR_CONSISTENT_GA
MESPEED

The game should run consistently
even if there are many objects

UR_DISPALY The game should run at >30 fps at all times

NFR_GAMEPLAY The game shall not crash or freeze
during gameplay

UR_DSIPLAY The game will only crash or freeze a maximum
of 1 in every hundred plays of the game

NFR_ACCESSIBILITY The game should have options for
those who are colourblind

UR_DISPLAY Deuteranomoly, Protanomaly filters should be
added at a minimum.

NFR_OS_VERAIONS The game should run on multiple
operating systems

UR_SYSTEM The game should run on Windows, Linux and
MAC OS

NFR_GAME_SIZE The game shall not be too large to
inhibit gameplay

UR_SYSTEM The game shouldn’t exceed 500MB during
gameplay

	Requirements

