Method selection and planning

Cohort 4 Group 6
Javangers

Braithwaite, Max
Faruque, Amber
Fu, Zhuoran
Kocaman, Melike
McDermott, John
Rissen, James
Scott, Charlotte



Justification of the team’s software engineering methods,
development and collaboration tools:

When deciding upon which software engineering approach to adopt, our group chose an
Agile methodology, as it best suited the nature of the project. Agile is an iterative and flexible
software development approach that focuses on incremental development, collaboration,
and continuous feedback. It encourages teams to adapt to change quickly and deliver
working software in short, manageable cycles rather than completing all development in a
single phase. Agile methodologies provide flexibility, promote continuous delivery, and
reduce the overall risk of project failure in comparison to non-Agile methodologies.

The primary Agile methodology we decided to adopt was Scrum. Scrum is a methodology
that organises work into short iterations called sprints. Each sprint involves reviewing,
planning, and development, allowing teams to continuously improve and deliver increments
of the project regularly. Scrum meetings commonly take place daily; however, we intend to
conduct weekly sprints as we do not plan to meet daily. A weekly sprint structure allows us to
balance our academic workload while still maintaining regular progress and consistent
communication. Although we will meet in person twice a week, we plan to maintain daily
contact through our WhatsApp group to discuss progress.

The use of Scrum provides us with significant flexibility. Since game development requires
constant improvements and prototypes, testing and evaluating as we progress, a flexible
approach is required. If changes need to be made midway through the project, for example if
a team member wants to change roles, or new user requirements are released, flexibility is
key in the project's success.

Scrum focuses on development divided into sprints, with each sprint planned in a meeting.
This is suitable for our team, as we intend to meet at least once a week outside of timetabled
sessions, to plan the sprint for that week. Each time we meet, we discuss task priorities and
everyone’s progress on their assigned task from the previous week. We discuss risks and
anticipate potential issues that may arise. The flexibility allows us to reallocate roles within
the team if any issues arise. Finally, we assign team members responsibilities for the next
sprint for the upcoming week.

Scrum allows us to adapt quickly and make changes to our initial plans, unlike other
non-Agile methodologies like plan-driven development, in which plans aren’t interchangeable
and adaptable, and is therefore unsuitable for evolving projects like game development. The
outcome of game development very rarely matches the initial plan exactly. Changes tend to
be made to the initial plan throughout the game's development if new, more efficient ideas
and solutions are created. We considered other Agile methodologies such as XP, however
we believe it is less suitable for a short-term, small-group game development project due to
its intensive technical practices such as programming and continuous integration, which can
be time-consuming and hard to manage within a short timeframe. In contrast, Scrum’s clear
roles and structured sprints are better for keeping small teams organised and focused on
deliverables.

Agile methods like Scrum and XP are the best suited for small to medium sized teams. This
is because they allow for clearly assigned roles for each team member, so each member has
designated responsibility and therefore has a clear understanding of their contributions. This



is suitable since the project is short term, in small teams. Each team member can be
primarily assigned a specific section of the project to be primarily responsible for.

We haven't just limited ourselves to using Scrum alone. We intend to use Kanban Boards to
assist in project management. Kanban boards offer visual tracking of tasks and workflow,
allowing the team to see progress at a glance and quickly identify constraints.

As a team, we are utilising shared Google Drive as a key collaboration tool for our group,
where we can collaboratively contribute to brainstorming ideas, and writing up the project.
Each team member has been assigned a primary section of the markscheme to work on,
consisting of separate Google Docs for each section. However, team members can access
all of these docs, and add and contribute to any, for example if we decide to prioritise a
specific task, we could assign more team members to work on it. This tool supports Scrum
since it promotes transparency and collaboration.

WhatsApp is another collaborative tool we have utilised. Within our group chat channel, we
can communicate with each other on a daily basis to keep track of each other's progress,
ask questions and plan in person discussions. This supports Scrum software methodology
as it allows us as a team to communicate and to plan our next team meeting and sprints. It
also supports flexibility as we can discuss progress and problems, and re-allocate roles if
needed.

We are also using GitHub as both a developmental and collaborative tool. There are many
benefits to using GitHub. Initially we made an organisation for this project, which creates a
team workspace, allowing us to create a repository, assign roles and push changes to the
game. GitHub will track every change made to our code. Branches can be used to work on
features separately, and merged once completed. It provides us with solid version control
which is essential for group coding projects. This software also fits in nicely with our software
development methodology Scrum since we push new changes each week, and use the
provided task board to organise work allocation.

When deciding upon which game engine to use, we researched a few different options. The
main game engines we found were LibGDX, gMonkey and LITIENGINE. Our final decision
was to go with LibGDX. LibGDX is one of the oldest and most mature java development
frameworks, therefore it has a large community with plenty of tutorials for supporting our
team in our game development, unlike others such as gMonkey which are much more niche
with a smaller community. LibGDX also provides us with more extensive tools and libraries
than Gmonkey and LITIENGINE, which can better support our game development.

The IDE which the majority of the team decided to use was Intellij IDEA. IntelliJ IDEA
provides smart code suggestions, error checking, and easy debugging, which help speed up
development and reduce coding errors. Intellid also integrates well with GitHub, allowing us
to manage version control, push changes, and merge branches directly from the IDE. Its
robust features make collaboration easier, as team members can work on different parts of
the project efficiently, while maintaining code quality. Overall, IntelliJ IDEA supports our
Scrum workflow by allowing quick, organised development



Organising the Team:

Since our team is organised using Scrum, our strategy for allocating tasks was to assign
each team member responsibility for a specific section of the project. We went round the
group and discussed each other's main strengths and weaknesses, allowing each member
to request their preferred role in which they would feel comfortable and confident in their
ability to fulfil it. For example, we identified which team members would prefer to focus on
coding the game, or gathering user requirements and conducting the client interview.

Our initial identification of tasks was based on the deliverables section of the mark scheme
so we assigned roles accordingly. Regardless, no team member was strictly limited to their
role - there are no restrictions. Instead they were given primary responsibility for that role. All
team members are able and encouraged to contribute to other tasks within the group
provided their primary focus is on their initial role. This approach aligns with Scrum, and
allows us to distribute team members to tasks of higher priority if needed. We felt like this
approach is best suited for the team as each member can focus on areas where they are
strong and confident, but also allows them to experience and assist in other areas of the
project where needed, keeping the element of flexibility. This approach encourages
accountability and collaboration within the team.

Our team’s approach to organisation and communication involves in-person weekly
meetings outside of practical sessions, at least once a week to perform our weekly sprints,
as well as continuous online interaction. Timings of meetings are discussed and organised in
our WhatsApp group prior to the meet. Outside of meetings, we maintain daily
communication through WhatsApp to share updates, coordinate work, and raise any quick
questions or issues. This allows the team to stay connected, monitor progress, and respond
promptly to changes. This approach is appropriate for both our team and the project
because it supports consistent collaboration, accountability, and flexibility. Weekly meetings
keep us organised and aligned with project goals, while ongoing online communication
ensures continuous progress even when we cannot meet in person.

Our team's organisation correlates directly with the project plan, which shows a start to finish
timeline of all the tasks to be completed. The plan and requirements will change throughout
the project, and so how we organise our team and allocate roles may change, and can be
discussed in the weekly sprint meetings or via the WhatsApp group. As a team, we have set
our own internal deadline, being a week prior to the actual deadline. This is to ensure that
we have enough time to peer assess each other's work for quality assurance and to avoid
the risk of anyone not understanding the requirements.

Overall, this organisational strategy provides the structure needed for clear task ownership
while remaining flexible enough to adapt to challenges, making it well-suited to both our
team’s working style and the project’s requirements.



Systematic plan for the project:

We broke the project down into a series of Work Packages (WPs):

WP1: Team Organisation, WP2: Requirements, WP3: Method selection and Planning, WP4:
Architecture, WP5: Risk Assessment, WP6: Game implementation, WP7: Website.

Each Work Package will contain a sequence of sub-tasks in the form: Task (per WP). These
sub-tasks, along with their dependencies, priority, start and end dates, can be found on the
project task table on the website.

Milestones: These mark important achievements and checkpoints in the project timeline,
representing key points where significant progress or completion happens.

M1: Establish and organise the team - Due Date: 29th September

M2: Establish user requirements post-interview analysis to ensure team familiarity - Due
Date: 13th October

M3: Finalise the project’'s work packages before the peer review - Due Date: 5th November.
M4: Finish game development for testing - Due Date: Wednesday 5th November.

M5: Project completion and submission - Due Date: Monday 10th November.

We have also broken down the project into a series of deliverables. Deliverables are
concrete outputs of the project. These can be either documents (like Requirements or
Architecture) or software (like prototypes). Each deliverable is given an ID and can have
multiple versions, such as interim drafts and final versions, each with unique IDs, e.g. (D1.1,
D1.2). The deliverables we've created can be seen via the deliverables table on our website.

The following write-up outlines the changes made to the project plan throughout the project
timeline and references the weekly Gantt charts, which are available on our website.

Initial Gantt Chart: This Gantt chart shows our initial timeline for the project, which we
aimed to follow as closely as possible however, we anticipated some adjustments as minor
diversions from the plan were inevitable. The first week (Team Organisation) was to focus on
team introductions, identifying individual strengths and weaknesses, and assigning primary
roles. Once completed, we planned to move on to Requirements Elicitation by brainstorming
interview questions prior to our interview with the client and to start thinking about our
approach to the Method Selection and Planning section. Our Interview Analysis depended
on the preparation and execution of interviews, which was planned for around the 9th
October. Once the analysis was complete, we planned to begin work on the Risk
Assessment and to develop initial Architecture Designs for the game, both of which would
rely on the client’s requirements to guide decision-making. Game Development would begin
shortly after the architecture phase to allow time for designing the game’s core structure
(e.g., primary classes) before starting to code. The website development was also planned
to begin alongside the game development however this ended up getting delayed. Finally,
Game Testing and Peer Reviewing would take place at the end of the project. Testing
depends on the completion of game development, while peer reviewing relies on all team
members finishing their assigned sections. Finally, note that the main sections:
requirements, planning, risk assessment and architecture all continue right up until the end
of the project since team members will be continuously adding and updating to these
sections.

Week 2 chart: As planned, organising our team took one week. In week 1, we became
familiar with our team members, discussed and distributed roles within the group. In week 2
we scheduled a meeting with our client to gather requirements. Many subsequent tasks


https://team-6-eng.github.io/Escape_University_Website/progressPlan.html
https://team-6-eng.github.io/Escape_University_Website/progressPlan.html

depend on this interview, as it provides the information needed to guide our decision-making
moving forward. To maximize time for post-interview tasks such as Interview Analysis, Risk
Assessment, and Architecture Design, we aimed to conduct the interview as early as
possible. We successfully booked it for Tuesday, 7th October, moving it two days earlier than
originally planned. As shown in the week 2 Gantt chart, we decided to assign these extra
days to the interview analysis, as this is a really important section and it's crucial that we fully
understand the client’s requirements.

Week 3 chart: In Week 2, we began Requirements Elicitation by brainstorming interview
questions as planned. We also started Method Selection and Planning, deciding on a
software engineering methodology to follow and setting up collaboration and development
tools, such as GitHub, for the project. No changes were made to the Gantt chart for Week 3,
as we remain on track with our initial plan.

Week 4 chart: In week 3, we conducted the interview with our client, and organised our
findings into tables outlining user requirements, functional and non-functional requirements.
Those that conducted the interview informed the other team members on the information
they received, and as a group, we performed the interview analysis. Again no changes were
made to the Gantt chart for Week 4, as we remain on track with our initial plan.

Week 5 chart: In week 4, we began our risk assessment by outlining our chosen risk
management process and brainstorming potential risks that could arise during development.
At the same time, we created initial architecture designs for the core functionalities of the
game. Our coding team then worked in parallel but slightly behind the architecture phase,
implementing each component after its design was completed. We plan to maintain this
pattern throughout the project to ensure smooth handovers and steady progress. Our team
member who was originally assigned to begin the website development was unable to start
as scheduled due to unforeseen family matters. This pushed the start date back by seven
days to Monday the 20th of October (Shown in the week 5 Gantt chart). Our choice of Agile
scrum methodology provided us with the flexibility to adapt to this unforeseen change. The
website development task was reassigned to another team member and elevated in priority.
To remain on schedule, we also prepared to involve additional members if needed to recover
lost time.

Week 6 chart: in week 5, we continued to develop our architecture designs, and coders
continued to implement them. With the core game functionalities established, we began
adding the hidden, positive, and negative events. We continued to structure and add
diagrams and charts for sections such as architecture and planning to our website. This
week we were on track, and there weren't any unexpected events to change the chart for
week 6.

Week 7 chart: During Week 6, our team focused on finalising and refining each written
section in preparation for peer review. We successfully completed the game implementation
three days ahead of schedule, enabling us to commence testing earlier than planned on
Monday, 3rd November. This provided additional time to thoroughly evaluate and ensure the
game meets the required functionality. Based on this progress, we introduced a new task,
refactoring the code. The refactoring process is directly dependent on testing results, as any
identified issues or inefficiencies will guide our improvements.This will allow us to further
optimise, refine, and finalise the game, ensuring it's up to quality standards.

Final Chart: In week 7, we conducted our testing, identified any errors with our code and
refactored the code to resolve these issues. We also conducted our peer reviews on the
written sections for quality assurance ready for submission. The week 8 chart as well as the
Final chart show our progress in the final week and the final completed plan.



	Method selection and planning 

