Architecture

Cohort 4 Group 6
Javengers

Braithwaite, Max
Faruque, Amber
Fu, Zhuoran
Kocaman, Melike
McDermott, John
Rissen, James
Scott, Charlotte

Architecture:
Abstract Architectural tools & notation:

For the architecture design, we used UML class and sequence diagrams, created
with PlantUML, to create a layout for the architecture of the system as well as the
entity and component interactions. These UML diagrams will follow a standard UML
2.5 Specification. All code was also completed using a libGDX framework and all
project progress and code has been uploaded via our Group Github. All diagrams
were created using google docs, Table Chart Maker for tables/CRC cards and
PlantUML for sequence and class diagrams.

All interim architectural diagrams have been uploaded to our team website: ENG1
Project - Cohort 4 Team 6

Architectural style/decisions:

For the abstract architectural style of this system, we decided it was best to
implement a layered architecture with an OOP(Object-Orientated-Programming)
structure to fulfil the language requirement of Java as well as offering easy code
structuring and planning early on. For the concrete architecture, we decided to use
libGDX and various different parts of its framework to make it easier to structure the
code(e.g. The libGDX Screen framework). Although due to this, we had to alter some
of the normal style for the layered architecture, which is explained below (justification
of abstract architecture).

Example of Architectural style (not all classes are included):

The domain layer manages the game state and rules, the presentation layer handles
the user experience/ui and the infrastructure layer provides seamless communication
and method calls between classes and layers.

PRESENTATION LAYER:

Components: GameScreen, MainMenuScreen, Lighting, HUD, etc.

Responsibilities: Render game world/menus, handle screen transitions and display
UlI/HUD

Dependencies: Bi-directional for infrastructure and can call domain layer

DOMAIN LAYER:

Components: Player, Goose,GameRules,Event tracking

Responsibilities: Enforce game events, manage entity behaviour and handle win/lose
conditions

Dependencies: Pure game logic, little to no libGDX (infrastructure) dependencies
INFRASTRUCTURE:

Components: Main class, Asset loading, Input mapping

Responsibilities: Bridge between libGDX framework and game, managing resources
Dependencies: Can (may not need to) be used by both layers

Component evolution analysis

https://www.uml-diagrams.org/uml-25-diagrams.html
https://www.uml-diagrams.org/uml-25-diagrams.html
https://github.com/Team-6-ENG/Escape_Uni/tree/main
https://www.rapidtables.com/tools/table-chart.html
https://plantuml.online/uml/
https://team-6-eng.github.io/Escape_University_Website/index.html
https://team-6-eng.github.io/Escape_University_Website/index.html

Following this, we attached a table showing the initial planned components, what
they evolved into, and our rationale behind each of these changes.

Planned
component Implementation Rationale for change
1 State Manager LibGDX Screen Leveraging the frameworks built-in
interface lifecycle management reduces
for Screen-Based custom code and maintains state
management* separation (Simple program in need

of less customization).

2 Resource/Asset Direct Asset Loading Simplified architecture for the small

Manager Assets loaded in asset scale and the frameworks
constructors/main "garbage collection”/disposing is
class sufficient for program requirements

3 Input Handler Distributed Input Reduces coupling® between
Processing unrelated input (in given contexts).
Input handled per-
screen

4 Core Game Main Class Aligns with previously mentioned

Loop Extends "Game”, screen lifecycle of framework and
handles window avoids unnecessary code.
lifecycle*

5 Game Screen Implemented as Core component stayed the same.
planned Gameplay features changed during

development.

6 Menu Screens Improved on original Improving user experience and

ur polishing original planned simple UI.
7 Map Manager Implemented as No deep planning was given for this
planned* feature and was decided as options

were discovered.

Behavioural Architecture

Our gameplay loop follows a structured event sequence where players progress
through key locations while managing time pressure and dynamic positive, negative
and neutral events (as shown below). The sequence diagrams shown on the Web
site illustrate the core gameplay loop, all optional events, and win/lose conditions.

Play event sequence(Sequence diagrams):

This follows a framework handled lifecycle (screen transitions), where the users input
with the presentation layer (menu screen) will trigger a state/screen transition which
is managed via the infrastructure layer in main, and will then initialize the domain
layer for the gamescreen entities/logic.

Movement sequence(Sequence diagrams):

https://team-6-eng.github.io/Escape_University_Website/sequence-diagrams.html
https://team-6-eng.github.io/Escape_University_Website/sequence-diagrams.html
https://team-6-eng.github.io/Escape_University_Website/sequence-diagrams.html
https://team-6-eng.github.io/Escape_University_Website/sequence-diagrams.html

Movement allows the infrastructure to capture user input, domain entities (player) to
process the game logic and the presentation layer (game screen) handles output via
visual feedback/movement of the sprite.

Player event sequence(Sequence diagrams):

This provides a clear example of how our architecture handles multiple interactions
between layers whilst also maintaining a clear separation of concerns. The user
input collected via the domain layer, triggers a screen/state change for the
presentation layer (moving to the Ron Cooke hub) and the infrastructure layer
providing communication and method calling across the entire chain of interactions
for this sequence.

lteration:

ClassV1 -> ClassV2 Changes and rationale(Class diagrams):

Initially, as shown in ClassV1, we had planned a traditional manager-based/parent
architecture with most features having centralized controllers such as
“‘StateManager”, “InputHandler” and “EventManager” inside of our infrastructure
layer. Once we began further implementation, we discovered that the LibGDX
framework we decided on naturally led towards a more distributed approach rather
than centralized. One example of this, as mentioned below, is the “Screen system”
which replaced our original “State Management”, allowing for our state lifecycle to be
more easily managed and our input handling was naturally changed into a more
distributed system along with this for each individual screen. This is shown in
classV2. Therefore keeping all of the input code context relevant to the current state
of the game and the screen the user is on.

LibGDX screen interface - Trade off - This provides less granular control than a
custom state machine but due to the lack of complex state nesting, unpredictable
transitions or undo operations/state history there would be no need for such granular
control, therefore making the trade off a better fit for this project.

Distributed input handling - The input processing is distributed across different
screen classes rather than the original idea to have a centralized handler
(InputHandler) as shown below. This provides each screen with the specific input
requirements, reduces coupling (mentioned in a later section) and allows for simpler
debugging and performance improvements due to localised input issues and
reducing input checks for inactive screens.

These changes moved us from centralized managers (infrastructure) to allow for a
clearer and more easily visible layer separation. This is shown with our presentation
of screens, domains containing entity logic and how they handle their own
responsibilities. This aligns better with the layered architecture and the LibGDX
framework/conventions.

ClassV2 -> ClassV3 Changes and rationale(Class diagrams);

The architectural stability between classV2 and classV3 validates the maturity and
scalability of our architecture and is shown in the lack of structural changes required
to integrate new features into existing layers. The established separation of layers

https://team-6-eng.github.io/Escape_University_Website/sequence-diagrams.html
https://team-6-eng.github.io/Escape_University_Website/class-diagrams.html
https://team-6-eng.github.io/Escape_University_Website/class-diagrams.html

between presentation, domain and infrastructure provided a consistent and solid
foundation to accommodate all new features added during the iteration.

We had the addition of AudioManager to the infrastructure layer which proved the
scalability of our architecture and that new cross cutting concerns can be integrated
to this layer without disrupting existing layers or code.

We also had the addition of new domain classes such as BuildingManager and
Collectable, as well as screen classes (e.g. RonCookeScreen, LangwithScreen and
InstructionsScreen). These confirm the effectiveness and scalability of our
architecture and screen-based presentation layer while avoiding redesign or altering
the architecture.

RC lteration(CRC Cards):

A complete requirements traceability matrix showing how each requirement maps to
specific CRC cards is available on our team website: Mapping

As shown below, most of the iteration from our original CRC cards to our final ones
suggested changes of:

- Distributed screen input handling
- Direct method calls for simpler communication of events
- Screen system handling state management

Planned CRC

Final CRC/Method

Responsibility/method
shift

State manager

GameScreen + All
Screens

State management is
distributed for each
context (event/screen)

InputHandler

Player + Screen Classes

Input processing is
localised to users/screens

EventManager Direct method calling Simpler communication,
no need for manager
class

AssetManager Constructor loading Simplifies resource
managing/loading

HUD GameScreen.renderUl() Integrated to gameplay
screen

Project Modularity:

Architecture characteristics:

e Maintainability: Good - Layers allow for easy modification
e Performance: Good - FrameBuffer optimization for lighting system

https://team-6-eng.github.io/Escape_University_Website/crc.html
https://team-6-eng.github.io/Escape_University_Website/crcReferences.html

e Testability: Moderate - Presentation layer requires LibGDX framework, other
layers are testable

Cohesion:
e BuildingManager handles only transition logic - Medium cohesion
e Every screen class contains rendering logic for its state - High cohesion

Coupling:
e Afferent Coupling - GameScreen has high incoming connections
e Efferent Coupling - Main class has high outgoing dependencies (Expected)
e Connascence - Player/Goose share static connascence due to
SpriteAnimation

Abstr. rchi re justification:

As mentioned above, OOP with a layered architecture was chosen as it works with
the required language as well as allowing for easier structuring of code and
abstraction for code modularity. Due to Java's class inheritance type structure of
OOP, we used this to plan the original planned classes, subclasses, methods,etc.
These changed throughout development and iteration but allowed for a much
cleaner and more simple planning system without bloating or confusing our code
structure.

We also implemented a layered structure due to the small team scale, in which
layered architecture allows for easy parallel work such as splitting the presentation
and domain layers into different tasks. This also aligned well with allowing for more
comfortable allocation of tasks to team members who prefer front end in
presentation, or logic in domain, etc. Layered architecture also provides a clear
separation between framework code and game logic, as well as making it easier to
learn libGDX since the layers split responsibilities. Layered architecture also
provides a clear separation of concerns for a 2D game, as well as being easily
maintainable for a student team project.

Overall, we used layered architecture as an overarching layout for how our system
would be developed, while using OOP to structure inside of our individual layers to
reduce clutter and keep code structured.

Concrete architecture justification:
As mentioned above, we decided to use LibGDX as our framework for concrete

architecture due to its simplicity, deployability and pre-built frameworks. LibGDX’s
screen framework naturally suggests a layered system and allows for easier loading,
managing and deposing of screens. This comes hand in hand with our layered
architecture and allowed us to remove the need of a screen manager which we had
originally planned. This allows us to take advantage of the LibGDX Screen interface
which fits directly into the infrastructure layer of our planned architecture. It also
provides a built-in screen lifecycle and also functions as a memory management
system since it will automatically dispose and isolate unused or separate game
states.

Another abstract architecture decision would be the bi-directional dependency
between our presentation and infrastructure layers. Traditionally layered architecture
would not use this approach, but since we are implementing libGDX’s
framework-controlled lifecycle, we adapted the layered architecture to this approach,

allowing for the bi-directional dependency. This is because the infrastructure layer
(main class) owns the screen initialization and rendering/deposing loops, therefore
calling the presentation layer. This is the rationale behind our change and the
change still maintains separation of concerns as a typical layered architecture would
but also respects the framework implemented for the game.

	Architecture

